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MODELING HUMAN TRACKING ERROR IN

SEVERAL DIFFERENT ANTI-TANK SYSTEMS+

David L. Kleinman
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SUMMARY

The Optimal Control Model (OCM) of human response serves as a mechanism
for generating sample time histories of human tracking error in different
anti-tank systems. The systems under study include TOW (Tube-Launched
Optically Guided System), DRAGON (Shoulder Mounted) and ITV (Improved TOW
Vehicle). The model-generated trajectories are compared with field-test
data across several dimensions including time-domain (temporal) statistics,
frequency content and subjective comparisons on individual runms.

MODELING APPROACH

The objective of this work is to develop a computerized model for gen-
erating human tracking error time histories in several different anti-tank
systems. The systems include those in common use by the US Army such as
TOW, DRAGON and ITV. A fourth system - GLLD (Ground Launched Laser Designa-
tor) is similar to TOW and will not be discussed here. Of these systems,
TOW and DRAGON are basically command line-of-sight (L0S), whereas ITV is a
rate command system. The model that is developed must produce accurate fac-
similes of tracking error over a wide range of target trajectories, from
crossing (straight-line) motion to maneuvering motion. The model must be
causal in the sense that future target motions are unknown at the preseat
time,

For the systems and target passes considered here, target motion is
restricted to the azimuth axis, i.e. the gunner and target vehicle are both
at the same ground level. Tracking error in elevation arises solely from
the human's inherent motor and observation randomness. Although the model
that we have developed treats both axes, we discuss primarily the results
for the azimuth axis here. A more complete discussion and presentation of
the results may be found in Ref. [1].

The Optimal Cnntrol Model

The Optimal Control Model of human response is used as the mechanism
for building the anti-tank tracking model. The OCM technology has been
successfully applied in numerous contexts including pilot control, anti-air-
craft artillery, etc. The mechanics of using the OCM to generate sample
path time-histories (as opposed to statistical measures) is described in
Ref. [2]). Our application follows this approach, with minor modifications
=0 account for the dual-axis nature of the tracking task. The pertinent
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equations for Monte-Carlo/Sample Path Simulation using the OCM may be found
in Ref. [2].

Application of the OCM requires specification, for each given system-
display-manipulator dynamics, of 1) the operator's task objectives in terms
of a set of cost functional weights, 2) the parameters that define the oper-
ator's inherent limitations, and 3) an "internal" model of the target dyna-
mics. With these items specified optimal control and estimation theory is
used to obtain the human's feedback strategy, and generate clos:d-loop per-
formance results.

1. Task Objectives: For a basic tracking task, wherein the human attempts
to keep the error e(t) small, we use a cost functional

J@) = E{e?(t) + Q e2(t) + o a2t} e,

The weighting Q reflects a human's subjective weighting on error rate.
It is indicativé of strategy, style or technique and could be associated
with the type of training on a given system. The weighting Q on error
rate induces a first-order lag that is associated with the neuro-motor
system dynamics. For each system we select Q. to yield T,=neuro-motor
time-constant = .1 sec. The value of Q is to be determined for each
system, based on data comparisons.

2. Human Operator Limitations: The primary human operator limitaticns
modeled in the OCM are those associated with perceiving displayed quan-
tities and executing intended control motions. The observational sub-
model in the OCM assumes that the human observes tracking error

y1(t) = e(t) and tracking error rate y,(t) = é(t). However, the human
perceives a delayed and noisy replica of these signals via

ypi(t) =Fly,(c-1]+ vyi(t -0 i=1,2 (2)
The function F(-) represents a visual/indifference threshold of value
= 0.6 mr * display gain on error and a; = .5a; on error rate. The
time-delay T = .15 sec. Each observation noise is white with covariance
2
vyi(:) = py1 E{yi(t)}/ ATTN (3)
Where p,4 = .0lm (-20dB); the attention allocations are assumed split
0.8 for azimuth vs 0.2 for elevation.? The nominal parameter values
assoclated with the observational submodel are assumed fixed for all

systems and target types considered.

The neuro-motor snbmodel for generating human corrective inputs is
gliven by

'n u(t) + ult) = uc(t) + vu(:)

A more precise mudel would be to employ dynamic attention allocation.
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The quantity u,(t) is the "commanded”" control input that is generated
from the Kalman Filter/Predictor/Gains cascade; T, is the neuro-motor
time constant. The white motor-noise vu(t) consists of an additive plus
a ratioed component for each axis. The covariance of the motor-noise
for azimuth and elevation axes, respectively, is

E{u (t)} + Pap E{ucE(t)} (4a)

A A{u (t)} + Pgp E E{u cE(t)} (4b)

Vaa < VuA

Ve T qu Pe

The crossfeeds p,p and PEA model uncertainty/randomness in one axis
resulting from manipulator motion in the other axis. For the systems/
targets studied, elevation commands u.g are small relative to azimuth
commands u (recall target motion is in azimuth only). Thus, PEE and
p,r are not readily obtained frorm the available data. Therefore, we
have assumed

Pap ™ PEE ™ Py and Ppg ™ 0 (5)
The remaining quantities V s Py» Pgp are system/manipulator depen-
dent. Their values must be elicEted from model - data comparisons.

Finally, Eq(4) shows that the motor-noise scales with commanded control
input u, (t). In some instances, e.g. command LOS systems, it is more
natural for motor-induced randomness to scale with commanded rate u (t).

3. Target Submodel: 1In the present application of the OCM to track ground

targets, target velocity é (t) and acceleration e (t) are generally
small. Thus, we use a simple internal model for target motion

x(t) = wd(t) (6)

where x(t) is the human's internal representation of target velocity.
The "dr*.ing noise" wy(t) has covariance

cov [w (t)] = 8 6%(:) +a éi(z) 7

Note that the "truth'" model is x(t) = éT(t). The values selected four o
and B are

8 = 10%, o= .015 @)
These values are constant across all systems and targets studied.
Data-Model Comparison Procedures

The OCM can be used to generate, for a given system and target trajec-
tory, an ensemble of tracking error time histories Ej = {ej(t) ;3 = 1,...M}
These model-generated runs may be compared against an ensemble of equivalent
data trials, Ej. Clearly, it is the statistics of these two ensembles that
one would wish tc compare via model-data validation tests. Several modes of

comparison are possible, - discussed below. For consistency we have found
it useful to remove t! ' aporal mean Hej from each run prior to analysis.
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Thus,
1 .
ej(ci) - ej(ci) ~ Vo 3 Moy T F 1;1 ej(ti) (9)

where ty, 1 = 1,...N are the sampled values of es(t). This procedure removes
random variations in signal mean, DC bias offsets in field recording equip-
ment, biases in human aiming point, etc.

1. Ensemble 4nalysig: The ensemble mean and standard deviation can be com-
puted in the usual manner,

M

ue(t:) = Ensemble mean = % 2 ej(t) (10a)
j=1
1 - 2 |1/2
o,(t) = Ensemble SD =) &=r 3, ey () - uy(t)] ‘ (10b)
3=

Since the sample runs have been rendered zero (temporal) mean we would
expect U, (t) = 0 if the ensemble was stationary.

2. Temporal Analysis: 1i the ensemble E is stationary, Ug(t) z 0 and
oe(t) >~ constant so that the information content in the temporal c¢nsem-
ble is reduced to a single number, i.e. RMS tracking error. A more
direct way to obtain average RMS tracking errur is to compute the tem-

poral statistic

1 N o, 1/2

0oy = [F:l- 3 ._-J(ti)] (11)
i=1
for each run, and form the composite, M-run average, via
g =i 3 g (12)
e M ] ej
J4

However, urlike the ensemble analysis, Og is meaningful only in the

stationary case, Its computation in the non-stationary case 1is possible,
but of dubious interpretation.

3.  Frequency Domain Analysis: The RMS temporal metrics give an indication
of total error power, they do not indicate how this power is distributed
over the frequency range, whether there exists resonances, etc. To
obtain these later indicators of system response we compute, from the

temporal ensewble E = {es(t), § = 1,...,M}, a frequency domain ensemble
of normalized error PSD, E* = {e*(w), j = 1,...,M} where

3
N
() w| 1o -
HO) o z__‘,l e (t,) exp[-jut,] (13)

Normalization greatly reduces the sensitivity to motor-noise and inter-
subject variability since it considers only reiative power distribution
over w. Note that the PSD computations are strictly valid for a sta-
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tionary ensemble; their computation is possible for any ensemble, of
course, but the interpretation in the non~stationary case is dubious.

The ensemble E* of normalized error PSD can be averaged (in the
same manner as E) via equations similar to (10a - 10b) to yield the
ensemble mean U, *(w) and ensemble SD, U,*(w). Comparison of model and
data PSD statistics is thus possible ang provides another, interesting,
facet for model validation.

RESULTS

In this section model-data comparisons are given for the three anti-tank
systems considered. 1In each case it is necessary to provide a description of
the system-manipulator dynamics, and values for the motor-noise parameters
and error rate weighting Qé.

TOW System

The TOW system is a command LOS system consisting of a launch tube plus
sight mounted on a viscous (rate) damped turret. Thus the torque supplied by
the operator to point the sight varies with sight (i.e. control) rate. The
dynamical model used for the TOW system is

T = 0.1 scc. (14)

These dvnamics are chosen for convenience*, and are viewed as representative
of the manipulator (arm-vi.scous mount) characteristics.

1
T(s) = Ts+l °

In our data-model analysis of the TOW system we found Q. = 0 gave best
match. The motor-noise in the OCM is assumed to scale with Sommanded (i.e.
LOS) rate, and the pertinent noise parameters (obtained from matching RMS
scores) are

vﬁ = [.05, .01], p = .005, p., = .015

The temporai RMS stutistics, computed via Eqs (11)~(12), fur three dif-
ferent ensembles are given in Table 1. The TF and TS ensembles correspond
to crossing targets at a range of 3Km with §_ = 5.47 and GT = .55 mr/sec,
respectively. These ensembles are stationary. The TM ensemble corresjonds
to a set of 19 maneuvering trials. In these cases the target was approaching
the gunner following a serpentine path with é; ~ 1 mr/sec, 87 ~ -5 mr/se

f

peak values. Each target pass was somewhat different; this ensemble is not
staticnary.

The model-data comparisons shown in Table 1 are excellent for both
azimuth and elevation axis tracking (The numbers in parentheses are the
computed standard deviations in the RMS tracking errors.) Only the eleva-
tion SD is not well-matched for the -.aneuvering trials. Tais dizcrepancy is
expected to be corrected by a dynamic attentional submodel. A comparison of

+At. least first-order dynarics are required by the OCM.
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model-data normalized PSD ensemble statistics is shown in Figs. 1-2 for the
TF ensemble. The results are in excellent agreement. A t-test performed
pointwise was used to confirm the equality of the PSD means at the 95% con-
fidence level.

TABLE l - COHPARISON (F TEMPORAL TRACKING ERRORS TOW SYSTEM

Anmuth SO E]evatmn SD
Mo e —— - e
Data Model Data Mode

TF 23 0.106(0.017) 0.119(0.018) 0.050(0.009) 0.052(0.009)
TS 19  0.057(0.005) 0.054(0.004) 0.030(0.006)  0.031(0.005)
™ 19  0.35 (0.10) 0.35 (0.07) 0.14 (0.02) 0.05 (0.01)

Individual runs prcduced by model and data can also be compared subjec-
tively. Fig 3 is a comparison of a model and a data run from the TF ensem-
ble. Fig 4 likewise iz a comparison of model-vs-data trials r one of the
maneuvering target paases. The "eyeball" similarity is quite impressive.

DRAGON System

The DRAGON is a shoulder-mcunted system that consists of a launch tube
plus sight. The front of the tube is pivoted on a support; the rear part of
the tube rests on the operator's shoulder. Thus, as the operator (usually
in a seated position) tracks a crossing target he must continucusly move his
shoulder by leaning his torso more and more to one side. There are no dyna-
mics asscciated with the system per-se. The only dvnamics are those associ-
ated with the operator's torso--i.e. the coatrol "manipulator'. These dyna-
mics are approximated as

T(s) = ‘s/S +1 (15)

s Z
(5) *+2 S

where » = 11 + 1 rad/sec, B = 3 + 1 and { = .15 for tiit in the azimuth axis.

The motor-noise for the DRAGON system is assumed to scale with commanded
angle/body tilt as randomness increases greatly if one is required to track
wvhile leaning to one side. The motor-noisc parameters are

o

Vo " (8, .25}, p, " .0001, PEa ™ .000015

The weighting on error rate Qé = Q.

The tracking error data for DRAGON consisted of = 40 passes of a crossing
target at lkm with Ie | = 10 mr/sec. In approximately 1/2 of the runs the
target moved from riggt to left (DR); in the other runs motion was from left
to right (DL). A comparison of the tewmporal RMS statistics of modi:l-vs-data
is shown in Tahle 2. The results ure #xcellent, but this is not a stationary
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ensemble as the motor-noise covariance increases during the course of a run!
Indeed, Figs 5-6 show the true nature of the tracking error ensemble for
model and data. This is a more meaningful comparison than is temporal RMS
error.

TABLE 2 - COMPARISON OF TEMPORAL TRACKING ERRORS, DRAGON SYSTEM

Az1muth SD E]evat1on SD

M
Data Model Data Model

DR 21 7.35(3.3) 6.82(0.9) 2.78(1.5) 2.73(0.35)
DL 22 7 2 (2 6) 6.82(0.9) 2.35(1.4) 2.73(0.35)

Comparisons of normalized error PSNM for model and data provides another
yardstick for judging the effectiveness of the OCM application. As noted
earlier, interpretation of these results must be made cautiously as the en-
semble is non-stationary. Nevertheless, we can consider this as the "aver-
age frequency content'" in the error waveforms. Figs 7-8 contain the model-
data frequency comparisons for the azimuth axes. The results are excellent.
A final model-data validation test is via the subjective comparison of indi-
vidual tracking error time histories. Fig 9 shows a typical data run vs. a
typical sample path from the OCM.

ITV System

In the ITV System a TOW mount is driven through rate command dynamics
by the human using a haundlebar controller. The system dynamics can be ap-
proximated by the transfer function

X T = 1 K= .1
s(ts 3 1) = 7 Sec, =,
Since the handlebar is spring-loaded we assume that the motor-noise scales
with commanded control input. The motor-noise parameters pertinent to ITV
are

T(g) =

02 - =
Vu [.04, .011. °u .03, pEA .012

In additioun it was found that a weighing Q = ,5 resulted in a best match
between uodel and data PSD ensembles.

TABLE 3 - COMPARISON OF TEMPORAL TRACKING ERRORS, ITV SYSTEM

I Y T LGN aSwIiSzoo--s iz ez == B R AP S =

Az1muth SD Elevation SD

Mo e e - -

Data Model Data Model

lC 2t O 112(0 035) O ]‘4(0 027) 0.092(0.023) 0.091(0.017)
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There was data from only one ensemble for ITV, corrcsponding to a cross-
ing target at 2Km with 8. ~ 1. The target was moving towards the gunner on
a 40° angle. Table 3 gives the model-data comparisons for RMS tracking error
in this stationary ensemble. A subjective comparison of a typical model-vs-
data time history is given in Fig 10. The comparison of PSD ensemble sta-
tistic of model and data is provided in Figs 11-12. Again, we find excellent
agreement between OCM results and the field-test data. Note that this agree-
ment is excellent not only for the PSD mean statistics, but also for the 2nd-
order statistics that give an indication of the iun-to-run variability.

CONCLUSIONS

It has been demonstrated that the Optimal Control Model can be used to
generate accurate facsimiles of target tracking error in various different
anti-tank systems. While these results were not entirely unexpected, based
on previous applications of the OCM, they are quite interesting in that com-
parisons have been made across several dimensions. By using the moudel to
generate an ensemble, data and model ensembles can be studied, averaged and

manipulated in similar manners, yielding similai results (at least to 2nd
order statistics).

The types of systems studied were quite varied, especially with regard
to their manipulator characteristics. Thus, it was necessary to adjust the
motor-noise paramccers in the OCM among systems.

Further application of the OCM to anti-tank tracking systems is expected
to refine these results, focus on dynamic inter-axis attentional allocation,
and refine techniques for parameter value identification.
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